

B-32/1/2, MIDC, Ranjangaon, Pune, Maharashtra info@hiphysix.com, infohplindia@gmail.com Phone: 02138 - 232901, 232902, 232903

CIN: U74120DL2009PTC194754

Mobile 1 : +91 7768005400 Mobile 2 : +91 7768005411

Mobile 3: +91 7768005422

Page No. 01 of 08

TEST REPORT

TEST REPORT AS PER IS 2993:1998

SRF No. 18020823

Name & Address of Customer:

M/s.TIBREWALA ELECTRONICS

LIMITED

Plot No. 17, S.V. Co-op. Industrial Estate, Balanagar, Hyderabad – 500 037 Test Report No: HPLI/Test/1802082301 Date of Issue: 26/02/2018

Customer Ref. & Date: Letter dated January 31, 2018

Date of Sample Star Receipt: 02/02/2018

Start of Test Date: End of Test Date: 06/02/2018 18/02/2018

PART A - PARTICULARS OF THE SAMPLE SUBMITTED

Sample description	A.C. MOTOR CAPACITORS
Grade/ variety/ type/ class/ size etc.	1.00 MFD ±5%, 440VAC, SH-MPP, 50 Hz, 25/85/21
Declared values, if any	1.0 MFD, 440Vac, 50 Hz, SH, MPP, 25/85/21, Continuous, AC Motor Run, C, (P0)
Code no., BIS seal and IO's sign. if any	Nil.
Batch no., date of manufacture and Brand name	Date of manufacture: 25/12/2017
Quantity	120 Nos.
Condition of the sample	OK
Reference specification (s)	IS 2993:1998 (Tests have been carried out as per the customer's request)
Environmental conditions	Temperature (25±4)°C & Relative Humidity<65%

PART B - SUPPLEMENTARY INFORMATION

- a) Deviations from the test methods as per relevant specification/ work instructions, if any: Nil
- b) Details of the drawings, graphs, tables, sketches or photographs as referred in the test report, if any: Nil
- c) Testing procedure according to work instruction HPLI03/Test-cap/WI-18 to 29.
- d) The Management System is maintained in accordance with IS/ISO/IEC 17025:2005 and testing Standards/Instruments are traceable to National/International Standards.

Notes:

- i) This report is not to be reproduced wholly or in part without our special permission in writing.
- ii) This report refers only to the particular sample detailed above.
- iii) The results reported in this certificate are valid at the time of and under the stipulated conditions of measurement.
- iv) Remnants of sample will be disposed off after 30 days of issue of the test report if no any further information is received.

Tested By

def.

Checked By

Format No. P 17F04-00

For HI PHYSIX LABORATORY INDIA PVT. LTD.

Dr. M. N. Awatade (Dy. General manager)

Approved By

B-32/1/2, MIDC, Ranjangaon, Pune, Maharashtra info@hiphysix.com, infohplindia@gmail.com Phone: 02138 - 232901, 232902, 232903

CIN: U74120DL2009PTC194754

Mobile 1: +91 7768005400 Mobile 2: +91 7768005411

Mobile 3: +91 7768005422

PART C-TEST RESULT

TEST REPORT NO.: HPLI/Test/1802082301

2. V. t. (() (1) (1) (1) (1) (1) (1) (1) (1) (1)	TESTS WITH CLAUSE REFERENCE te test (46 No. of Capacitors) Sealing Test (Cl. No. 2.4.1a) and 2.12 of IS 2993: 1998) Voltage Test Between terminals (Cl. No. 2.4.1b) and 2.7 of IS 2993: 1998) Voltage Test Between	The capacitor shall be mounted in a plikely to reveal leakage at a temperature 10 than the maximum permissible capacit temperature for a time sufficient for all capacitor to reach this temperature. The capacitor to reach this temperature for a before cooling. After the test capacitor inspected for liquid leakage and distorted are allowed to wet the surface but not to food The capacitors shall withstand an a.c. volta (twice of the rated voltage) between terms seconds at 50Hz. No flashover or breakdown shall occur.	O'C of higher for operating parts of the apacitor shall further hour ors shall be case. Liquids rm droplets. age of 880V	C	N/A Dry Capacito		
2. V t ((I I I V (I I I I I I I I I I I I I	Voltage Test Between terminals (Cl. No. 2.4.1b) and 2.7 of IS 2993: 1998) Voltage Test Between terminals (Cl. No. 2.4.1b) and 2.7 of IS 2993: 1998) Voltage Test Between	likely to reveal leakage at a temperature 10 than the maximum permissible capacit temperature for a time sufficient for all capacitor to reach this temperature. The capacitor to reach this temperature for a before cooling. After the test capacitor inspected for liquid leakage and distorted are allowed to wet the surface but not to for The capacitors shall withstand an a.c. volta (twice of the rated voltage) between temperature of the seconds at 50Hz. No flashover or	O'C of higher for operating parts of the apacitor shall further hour ors shall be case. Liquids rm droplets. age of 880V			ors)	
1. S ((1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Voltage Test Between terminals (Cl. No. 2.4.1b) and 2.7 of IS 2993: 1998) Voltage Test Between terminals (Cl. No. 2.4.1b) and 2.7 of IS 2993: 1998) Voltage Test Between	likely to reveal leakage at a temperature 10 than the maximum permissible capacit temperature for a time sufficient for all capacitor to reach this temperature. The capacitor to reach this temperature for a before cooling. After the test capacitor inspected for liquid leakage and distorted are allowed to wet the surface but not to for The capacitors shall withstand an a.c. volta (twice of the rated voltage) between temperature of the seconds at 50Hz. No flashover or	O'C of higher for operating parts of the apacitor shall further hour ors shall be case. Liquids rm droplets. age of 880V	(1)		ors)	
2. V t ((I I I V (I	Voltage Test Between terminals (Cl. No. 2.4.1b) and 2.7 of IS 2993: 1998) Voltage Test Between terminals (Cl. No. 2.4.1b) and 2.7 of IS 2993: 1998) Voltage Test Between	likely to reveal leakage at a temperature 10 than the maximum permissible capacit temperature for a time sufficient for all capacitor to reach this temperature. The capacitor to reach this temperature for a before cooling. After the test capacitor inspected for liquid leakage and distorted are allowed to wet the surface but not to for The capacitors shall withstand an a.c. volta (twice of the rated voltage) between temperature of the seconds at 50Hz. No flashover or	O'C of higher for operating parts of the apacitor shall further hour ors shall be case. Liquids rm droplets. age of 880V	()		ors)	
3. V to (1) 4. V (1) 11	terminals (Cl. No. 2.4.1b) and 2.7 of IS 2993: 1998) Voltage Test Between	The capacitors shall withstand an a.c. volta (twice of the rated voltage) between ter- seconds at 50Hz. No flashover or	age of 880V				
4. V			permanent	Withst	tood & No F	lashover	
[[]	terminals and case (Cl. No. 2.4.1c) and 2.8 of (S 2993: 1998)	No routine test is required if the case is made entirely of insulating material. The condition, workmanship, marking and finish shall be satisfactory. The marking shall be legible during the life of the capacitor.			N/A		
5 1 6	Visual Examination (Cl. No. 2.4.1d) and 2.6 of (S 2993: 1998)				Satisfactory		
(Capacitance Measurement Cl. No. 2.4.1e) and 2.9 of S 2993: 1998)	Testing shall be carried out at between 0.9 and 1.1 times the rated voltage and at	Capacitor No.	MFD	Capacitor No.	MFD	
1.	.5 2993. 1998)	the rated frequency. Measured at 440 V & 50 Hz.	1	1.01	24	1.00	
		(Declared Value: 1.00 MFD±5%, i.e.	2	1.01	25	1.02	
		Max. 1.05 MFD, Min. 0.95 MFD)	3	1.00	26	1.00	
		1.03 MI D, MIII. 0.93 MI D)	4	1.01	27	1.01	
			5	1.01	28	1.01	
			6	1.01	29	1.01	
			7	1.01	30	1.01	
			9	1.00	31	1.01	
			10	1.01	32 33	1.02	
			11	1.01		1.01	
			12	1.01	34 35	1.00	
			13	1.02		1.00	
			14	1.02	36 37	1.01	
			15	1.01		1.00	
			16	1.01	38	1.01	
			17	1.01	39 40	1.01	
			18	1.00	41	1.00	
			19	1.00	42	1.01	
			20	1.00	43	1.01	
			21	1.00	44	1.00	
			22	1.01	45	1.00	
		23	1.01				

Tested By

Page No. 02 of 08

Checked By

HI PHYSIX LABORATORY INDIA PVT. LTD

B-32/1/2, MIDC, Ranjangaon, Pune, Maharashtra info@hiphysix.com, infohplindia@gmail.com Phone: 02138 - 232901, 232902, 232903

CIN: U74120DL2009PTC194754

Mobile 1: +91 7768005400 Mobile 2: +91 7768005411 Mobile 3: +91 7768005422

PART C-TEST RESULT

TEST REPORT NO.: HPLI/Test/1802082301

IS 2993:1998

SI.	TESTS WITH CLAUSE	SPECIFIED REQUIREMENTS		RESULTS			
No.	REFERENCE						
6.	Tangent of Loss angle (Cl. No. 2.4.1f) and 2.5 of IS	The tangent of loss angle limit and measuring frequency shall be defined by the		Loss	Capacitor	Loss	
	2993:1998)	manufacture.	No. 1	Angle 0.0005	No.	Angle	
	2555.1556)	Measured at rated voltage and frequency.	2		24	0.0003	
		(Declared Value: Not Declared)	3	0.0005	25	0.0003	
		(Beerlanea Value: 1161 Beerlanea)	4	0.0003	26	0.0003	
1				0.0006	27	0.0004	
			5	0.0003	28	0.0003	
			6	0.0003	29	0.0003	
			7	0.0003	30	0.0004	
			8	0.0005	31	0.0004	
			9	0.0003	32	0.0004	
			10	0.0003	33	0.0003	
			11	0.0003	34	0.0005	
			12	0.0003	35	0.0004	
			13	0.0003	36	0.0003	
			14	0.0004	37	0.0003	
			15	0.0003	38	0.0003	
			16	0.0004	39	0.0003	
			17	0.0003	40	0.0003	
			18	0.0003	41	0.0003	
			19	0.0005	42	0.0003	
			20	0.0004	43	0.0003	
			21	0.0003	44	0.0003	
			22	0.0003	45	0.0004	
			23	0.0004	46	0.0003	
-	Tests (For Group 1) (No. of Caps	acitors Tested: 4 Nos.)					
1.	Visual Examination	The condition, workmanship, marking and fini	sh shall				
	(Cl. 2.6 of IS 2993:1998)	be satisfactory. The marking shall be legible de life of the capacitor.		Satisfactory			
2.	Marking	The following information shall be marked on	the		See below	OW	
	(Cl. 5.1 of IS 2993: 1998)	capacitors.					
		1) Manufacturer's name, abbreviated name or mark	trade	Marked as	. TIBC	ON FORS "	
		2) Manufacturer's Type designations,			SH-MPP		
		3) Rated capacitance (C _N) in Microfarads and		1.0	00 MFD ± 5°	%	
	}	tolerances as percentage. 4) Rated voltage (V _N) in Volts.					
	-	For Continuous		440VAC			
		For Intermittent			N/A		
		5) Rated Duty Cycle (if the capacitor is not into for continuous operation)	ended		N/A		
		for continuous operation)		50 Hz			

Tested By

Page No. 03 of 08

Checked By

B-32/1/2, MIDC, Ranjangaon, Pune, Maharashtra info@hiphysix.com, infohplindia@gmail.com Phone: 02138 - 232901, 232902, 232903

CIN: U74120DL2009PTC194754

Mobile 1: +91 7768005400 Mobile 2: +91 7768005411 Mobile 3: +91 7768005422

PART C-TEST RESULT

TEST REPORT NO.: HPLI/Test/1802082301

	I management and a second	I			993:1998
Sl. No.	TESTS WITH CLAUSE REFERENCE	SPECIFIED REQUIREMENTS	1	RESULT	TS.
		7) Climatic Categories		25/85/21	1 200
		8) Date of manufacture (Code may be used)		25/12/201	7
		9) or SH for self-healing capacitors.	SH-MPP		
		10) Discharge device, if any, shall be written in full or indicated by the symbol		N/A	
		11) Class of safety protection		Not marke	d
		12) Approval marks		Not marke	d
		13) Filling Material, Reference to liquid used (not needed for dry capacitors)		Not marke	d
		14) Class of operation or life duration.		Not marke	d
		15) Specification (Standard) number		IS:2993	
3.	3. Check of dimensions (Cl. 2.10 of IS 2993: 1998)	Dimensions of the case, of the terminals and of the fixing arrangements shall comply with those indicated in the drawing, taking tolerances into account. Dimension declared by manufacturer are: Height: 55±2 mm, Width:30±2 mm	Capacit or No.	Height (in mm) 56.23 55.97 56.27	Dia. (in mm) 29.31 29.20 29.11
		In addition, minimum Creepage distances and clearances indicated in table 5 shall be checked.		55.87 N/A Finsulating	
4.	Mechanical Tests (Cl. 2.11 of IS 2993: 1998)	1) Robustness of terminations (Cl. 2.11.1 of IS 2993: 1998) a) Test Ua-tensile (Cl. 2.11.1.1 of IS 2993: 1998) Applied load: 20N, After the test no visible damage shall be observed.		Satisfactor	
	,	b) Test Ub- Bending (Half of the termination) Two consecutive bends shall be applied. After the test no visible damage shall be observed. (Cl. 2.11.1.2 of IS 2993: 1998)	S	Satisfactory	y
		c) Test Uc- Torsion (Other half of the termination) Two Successive rotations of 180° shall be applied. After the test no visible damage shall be observed. (Cl. 2.11.1.3 of IS 2993: 1998)	S	atisfactory	V.
		d) Test Ud- Torque (screw terminals) The screw materials shall have adequate resistance against stress cracking. After the test no visible damage shall be observed. (Cl. 2.11.1.4 of IS 2993: 1998)		N/A	

Tested By

&f.

Checked By

Page No. 04 of 08

B-32/1/2, MIDC, Ranjangaon, Pune, Maharashtra info@hiphysix.com, infohplindia@gmail.com Phone: 02138 - 232901, 232902, 232903

CIN: U74120DL2009PTC194754

Mobile 1: +91 7768005400 Mobile 2: +91 7768005411

Mobile 3: +91 7768005422

PART C-TEST RESULT

TEST REPORT NO.: HPLI/Test/1802082301

IS 2993:1998

Sl. No.	TESTS WITH CLAUSE REFERENCE	SPECIFIED REQUIREMENTS	F	ESULT	8993:199 8
0	×	2) Vibration: The capacitors shall be subjected to vibration test with the severity: Frequency = 10 Hz to 55 Hz Amplitude = ± 0.35 mm Sweep rate = 1 Octave/minute Test duration per axis = 10 frequency cycles (3 axes offset from each other by 90°) (Cl. 2.11.3 of IS 2993: 1998)	S	atisfactory	/
		Before and after the test, the capacitance of the	Capacitor	Before	After
		capacitors shall be measured. (Values in MFD)	No.	Test	Test
		***************************************	1	1.01	1.01
			2	1.00	1.00
			3	1.00	1.00
		1	4	1.01	1.01
		No perceivable capacitance change is permitted.		atisfactory	
		After the test, the capacitor shall be subjected to the		,	
		voltage test between terminals and case. No dielectric	1777.1	1031 51	
		breakdown or flashover shall occur.	Withstoo	d & No Fl	ashover
		Test Voltage: 2000V for 60S.			
		There shall be no any visible damage.	S	atisfactory	
		3) Fixing bolts or studs (if fitted)		N/A	
5.	Sealing Test (Cl. 2.12 of IS 2993: 1998)	The capacitor shall be mounted in a position most likely to reveal leakage at a temperature 10°C of higher than the maximum permissible capacitor operating temperature for a time sufficient for all parts of the capacitor to reach this temperature. The capacitor shall be maintained at this temperature for a further hour before cooling. After the test capacitors shall be inspected for liquid leakage and distorted case. Liquids are allowed to wet the surface but not to form droplets.	(Dry	N/A Capacito	rs)
T	Tests (For Group 2) (No. of Cap				
6.	Endurance Test (Cl. 2.13 of IS 2993: 1998)	The capacitors shall be mounted in a test chamber of air temperature within $\pm 2^{\circ}\text{C}$. The thermostat shall be set to (t_c -15°C), and capacitors are then energized according to the appropriate voltage and test cycle. During the first 24 h the difference between tc and the indication of the temperature recording instrument shall be noted, and adjustments made to ensure the temperature of each capacitor case is at tc \pm 2 °C. The test is then continued to the end of the appropriate time without further adjustment of the thermostat, the time being measured from the first energization of the capacitors. The capacitors are energized at test voltage shall be 1.25U_{N} for 600hr Continuously. During the test no permanent breakdown, interruption or	See	Remark 1	
- 1		flashover shall occur.			

Tested By

Page No. 05 of 08 www.hiphysix.com Checked By

B-32/1/2, MIDC, Ranjangaon, Pune, Maharashtra info@hiphysix.com, infohplindia@gmail.com Phone: 02138 - 232901, 232902, 232903

CIN: U74120DL2009PTC194754

Mobile 1: +91 7768005400 Mobile 2: +91 7768005411 Mobile 3: +91 7768005422

PART C-TEST RESULT

TEST REPORT NO.: HPLI/Test/1802082301

				IS	2993:1998
Sl. No	TESTS WITH CLAUSE REFERENCE	SPECIFIED REQUIREMENTS		RESULT	S
		No leak should be apparent which form droplets within 10 minute, when kept at upper temperature limit in the most unfavorable position.	S	ee Remar	k 1
	e Tests (For Group 3) (No. of Ca				
7.	Soldering Test (Cl. 2.11.2 of IS 2993: 1998)	This test shall be carried out only when terminals are designed for connection by soldering.		N/A	
8.	Damp heat Test (Cl. 2.14 of IS 2993: 1998)	All capacitors shall be kept in the environmental chamber without energizing for at a temperature of 40°C±2°C & relative humidity between 90% to 96%. No voltage shall be applied to the samples and no measurement shall be taken during the test. After the damp-heat period, the capacitors shall be stored under standard atmospheric conditions for recovery for not less than 1 h and not more than 2 h. Immediately after recovery, the capacitance shall be measured. Testing duration: 21 days (As specified by customer)	5	See Remai	k 1
9.	Voltage Test Between terminals (Cl 2.7 of IS 2993: 1998)	The capacitors shall withstand an a.c. voltage of 880V (twice of the rated voltage) between terminals for 60 seconds at 50Hz. No flashover or permanent breakdown shall occur.	Withstood & No Flashov		Flashover
10.	Voltage Test Between terminals and case (Cl 2.8 of IS 2993: 1998)	The capacitors shall withstand an a.c. voltage of 2000V between the terminals (jointed together) and a metal foil wrapped tightly round the surface of the case, for 60seconds at 50Hz. During the test, no dielectric breakdown or flashover shall occur.	Withstood & No Flashov		Flashover
Тур	e Tests (For Group 4) (No. of Cap				
11.	Self- healing test (Cl 2.15 of IS 2993: 1998)	The capacitors shall be subjected to an a.c. voltage of 880V between terminals for 60seconds at 50Hz. If fewer than five self-healing breakdowns (clearings) occur during this time, the voltage shall be increased at a rate of not more than 200V per minute until five clearings have occurred since the beginning of the test	Capacitor No.	≥ 5 self healing occur at Voltage	No. of self healings observed at 0.8 times voltage
		or until the voltage has reached a maximum of $3.5 U_N$	32	880	0
		for continuously rated capacitor or $2.0U_N$ for intermittent or motor start capacitor.	33	880	0
		The voltage shall then be decreased to 0.8 times the	34	880	0
		voltage at which the fifth clearing occurred or 0.8	35	880	0
		times the maximum voltage and maintained for 10s.	36	880	0
			37	880	0
		permitted during this period.	38	880	0
			39	880	0
			40	880	0
			41	880	0

Tested By

Checked By

Page No. 06 of 08

B-32/1/2, MIDC, Ranjangaon, Pune, Maharashtra info@hiphysix.com, infohplindia@gmail.com Phone: 02138 - 232901, 232902, 232903

CIN: U74120DL2009PTC194754

Mobile 1 : +91 7768005400 Mobile 2 : +91 7768005411

Mobile 3: +91 7768005422

PART C-TEST RESULT

TEST REPORT NO.: HPLI/Test/1802082301

	IS 2993:1				
Sl. No	TESTS WITH CLAUSE REFERENCE				S
		The capacitors shall meets the following requirements: a) Change of capacitance is < 0.5%	Capacitor No.	Before Test (in MFD)	After Test (in MFD)
			32	1.02	1.02 1.01
			34	1.00	1.00
		· ·	35	1.00	1.00
			36	1.01	1.01
			37	1.00	1.00
			38	1.01	1.01
			39	1.01	1.01
			40	1.00	1.00
			41	1.01	1.01
				ge in capac 0.5% obser	
		b) RC value is ≥ 100 s.	RC value	e is > 100s	observed
Typ	e Tests (For Group 5) (No. of Ca				
12.	Destruction Test	This test applicable on Capacitors on which of class of		N/A	
	(Cl 2.16 of IS 2993: 1998)	safety protection (P2) or (P1) is marked.	(P0,decla	red by mar	ufacturer)
13.	Permissible overloads (Cl 3.1 of IS 2993: 1998)	Maximum permissible voltage: Irrespective of their type of operation, metal-foil and metalized capacitors shall be suitable for operation under abnormal conditions for prolonged periods at an rms voltage between terminals not exceeding 1.10 times the rated voltage. (Cl 3.1.1 of IS 2993: 1998)	exceeding volta	petween ter g 1.10 time ge as decla manufactur	s the rated red by
		Maximum permissible current: Capacitors shall be suitable for operation at rms current not exceeding 1.30 times the current which occurs at rated sinusoidal voltage and rated frequency excluding transients. (Cl 3.1.2 of IS 2993: 1998)	1.30 time occurs voltage exclu	rrent not ex es the curre at rated sir and rated fi ding transic d by manu	ent which nusoidal requency ents as
		Maximum permissible reactive output: The overload resulting from operation at voltage and current exceeding the rated values shall not exceed 1.35 times the rated output. (Cl 3.1.3 of IS 2993: 1998)	the rate exceed out	nd current ed values s 1.35 times put as decla manufactu	hall not the rated ared
	•	 Permissible extension of the duty cycle: Capacitors shall be suitable for operation: a) With a relative operation time not exceeding the rated operation time, b) With an absolute operation time not exceeding the product of rated relative operation time and rated cycle duration. (Cl 3.1.4 of IS 2993: 1998) 		N/A	

Tested By

Checked By

Page No. 07 of 08

B-32/1/2, MIDC, Ranjangaon, Pune, Maharashtra info@hiphysix.com, infohplindia@gmail.com Phone: 02138 - 232901, 232902, 232903

CIN: U74120DL2009PTC194754

Mobile 1 : +91 7768005400 Mobile 2 : +91 7768005411

Mobile 3: +91 7768005422

PART C-TEST RESULT

TEST REPORT NO.: HPLI/Test/1802082301 IS 2993:1998

			13 2993:1990
Sl. No	TESTS WITH CLAUSE REFERENCE	SPECIFIED REQUIREMENTS	RESULTS
14.	SAFETY REQUIREMENTS (Cl 4 of IS 2993: 1998)	Creepage distances and clearances: The creepage distances over external surfaces of terminal insulation and the clearances between the exterior parts of terminal connections or between such live parts and the metal case of the capacitor, if any, shall be not less than the minimum values given in table 5.(Cl 4.1 of IS 2993: 1998)	N/A
		Terminals and connecting cables: Terminals and undetachable connecting cables shall have a conductor cross-section which can safely carry the current of the capacitor and shall have sufficient mechanical strength.(Cl 4.2 of IS 2993: 1998)	N/A
		Earth connections: If the metal case of the capacitor is intended to be connected to earth or to a neutral conductor, means shall be provided to enable an effective connection to be made.(Cl 4.3 of IS 2993: 1998)	N/A
		Discharge devices: When a discharge device is specified, it must reduce the voltage at the terminals from the peak of the rated voltage to a value of 60 V or less in the time of 1 min from the moment the capacitor is switched off.(Cl 4.4 of IS 2993: 1998)	N/A

PART D:

Remarks: 1. Test report issued excluding Endurance test and Damp Heat test as per customer request. Test report for Endurance test and Damp Heat test will be issued separately after completion of test.

- 2. The observations given in part A of the cover page of the test report are taken from the marking on samples and Specification provided with the sample.
- 3. N/A=Not Applicable

*****END OF THE TEST REPORT****

Fested By

Checked By

Page No. 08 of 08

For HI PHYSIX LABORATORY INDIA PVT. LTD.

Dr. M. N. Awatade (Dy. General manager) Approved By

www.hiphysix.com